Boost Inrush Diode
SNVS574E – JULY 2008 – REVISED MAY 2013
V IN
L1
D1
V O
Q1
Figure 35. Boost Topology with Inrush Diode
CIRCUIT LAYOUT
The performance of any switching regulator depends as much upon the layout of the PCB as the component
selection. Following a few simple guidelines will maximimize noise rejection and minimize the generation of EMI
within the circuit.
Discontinuous currents are the most likely to generate EMI, therefore care should be taken when routing these
paths. The main path for discontinuous current in the LM3421/23 buck regulator contains the input capacitor
(C IN ), the recirculating diode (D1), the N-channel MosFET (Q1), and the sense resistor (R LIM ). In the LM3421/23
boost regulator, the discontinuous current flows through the output capacitor (C O ), D1, Q1, and R LIM . In the buck-
boost regulator both loops are discontinuous and should be carefully layed out. These loops should be kept as
small as possible and the connections between all the components should be short and thick to minimize
parasitic inductance. In particular, the switch node (where L1, D1 and Q1 connect) should be just large enough
to connect the components. To minimize excessive heating, large copper pours can be placed adjacent to the
short current path of the switch node.
The RT, COMP, CSH, IS, HSP and HSN pins are all high-impedance inputs which couple external noise easily,
therefore the loops containing these nodes should be minimized whenever possible.
In some applications the LED or LED array can be far away (several inches or more) from the LM3421/23, or on
a separate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large or
separated from the rest of the regulator, the output capacitor should be placed close to the LEDs to reduce the
effects of parasitic inductance on the AC impedance of the capacitor.
Copyright ? 2008–2013, Texas Instruments Incorporated
27
Product Folder Links: LM3421 LM3421-Q1 LM3423 LM3423-Q1
相关PDF资料
LM89EVAL BOARD EVALUATION LM89
LM95241EB BOARD EVALUATION LM95241
LOB3R005FLFLT RES METAL .005 OHM 3W 1% AXIAL
LP05-1A66-80V RELAY REED SPST 500MA 5V
LP5521TMEV EVAL BOARD FOR LP5521
LPS0300H1000JB RESISTOR HEAT SINK 100 OHM 300W
LPS0600H4R70JB RESISTOR HEAT SINK 4.7 OHM 600W
LPS0800H1000JB RESISTOR HEAT SINK 100 OHM 800W
相关代理商/技术参数
LM3423MHX 制造商:Rochester Electronics LLC 功能描述: 制造商:Texas Instruments 功能描述:
LM3423MHX/NOPB 功能描述:LED照明驱动器 RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N
LM3423Q0 制造商:NSC 制造商全称:National Semiconductor 功能描述:N-Channel Controllers for Constant Current LED Drivers
LM3423Q0MH 制造商:NSC 制造商全称:National Semiconductor 功能描述:N-Channel Controllers for Constant Current LED Drivers
LM3423Q0MH/NOPB 功能描述:LED照明驱动器 RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N
LM3423Q0MHX 制造商:NSC 制造商全称:National Semiconductor 功能描述:N-Channel Controllers for Constant Current LED Drivers
LM3423Q0MHX/NOPB 功能描述:板上安装温度传感器 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
LM3423Q1 制造商:NSC 制造商全称:National Semiconductor 功能描述:N-Channel Controllers for Constant Current LED Drivers